On a conjecture for the signless Laplacian spectral radius of cacti with given matching number

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Signless Laplacian Spectral Radius of Cacti

A cactus is a connected graph in which any two cycles have at most one vertex in common. We determine the unique graphs with maximum signless Laplacian spectral radius in the class of cacti with given number of cycles (cut edges, respectively) as well as in the class of cacti with perfect matchings and given number of cycles.

متن کامل

The Laplacian spectral radius of graphs with given matching number

In this paper, we show that of all graphs of order n with matching number β, the graphs with maximal spectral radius are Kn if n = 2β or 2β + 1; K2β+1 ∪Kn−2β−1 if 2β + 2 n < 3β + 2; Kβ ∨ Kn−β or K2β+1 ∪Kn−2β−1 if n = 3β + 2; Kβ ∨ Kn−β if n > 3β + 2, where Kt is the empty graph on t vertices. © 2006 Elsevier Inc. All rights reserved. AMS classification: 05C35; 05C50

متن کامل

The Signless Laplacian or Adjacency Spectral Radius of Bicyclic Graphs with Given Number of Cut Edges

LetB(n, r) be the set of all bicyclic graphs with n vertices and r cut edges. In this paper we determine the unique graph with maximal adjacency spectral radius or signless Laplacian spectral radius among all graphs in B(n, r).

متن کامل

The signless Laplacian spectral radius of graphs with given number of cut vertices

In this paper, we determine the graph with maximal signless Laplacian spectral radius among all connected graphs with fixed order and given number of cut vertices.

متن کامل

On the Signless Laplacian Spectral Radius of Unicyclic Graphs with Fixed Matching Number

We determine the graph with the largest signless Laplacian spectral radius among all unicyclic graphs with fixed matching number.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear and Multilinear Algebra

سال: 2016

ISSN: 0308-1087,1563-5139

DOI: 10.1080/03081087.2016.1189494